In this paper, we introduce the use of slow-silent virtual channels to reduce the switching power of on-chip networks while keeping the leakage power small. Adding virtual channels to a network improves the throughput until each link bandwidth is saturated. This enables us to reduce the switching power of on-chip networks by decreasing their operating frequency and supply voltage. However, adding virtual channels increases the leakage power of routers as well as the area due to their large buffers; so the runtime power gating is applied to individual virtual channels to eliminate this problem. We evaluate the performance of slow-silent virtual channels by using real application traces, and their power consumption (switching and leakage) is evaluated based on the detailed design of a virtual-channel router placed and routed with a 90nm technology. These evaluation results show that a network with three or four virtual channels achieves the best energy efficiency in a uniform traffic....