General-purpose operating systems, such as Linux, are increasingly being used in embedded systems. Computational resources are usually limited, and embedded processors often have a limited amount of memory. This makes code size especially important. This paper describes techniques for automatically reducing the memory footprint of general-purpose operating systems on embedded platforms. The problem is complicated by the fact that kernel code tends to be quite different from ordinary application code, including the presence of a signicant amount of hand-written assembly code, multiple entry points, implicit control ow paths involving interrupt handlers, and frequent indirect control ow via function pointers. We use a novel “approximate decompilation” technique to apply source-level program analysis to hand-written assembly code. A prototype implementation of our ideas on an Intel x86 platform, applied to a Linux kernel that has been congured to exclude unnecessary code,...