In highly power constrained sensor networks, harvesting energy from the environment makes prolonged or even perpetual execution feasible. In such energy harvesting systems, energy sources are characterized as being regenerative. Regenerative energy sources fundamentally change the problem of power scheduling for embedded devices. Instead of the problem being one of maximizing the lifetime of the system given a total amount of energy, as in traditional battery powered devices, the problem becomes one of preventing energy depletion at any given time. Coupling relatively computationally intensive applications, such as video processing applications, with the constrained FPGAs that are feasible on power constrained embedded systems, makes dynamic reconfiguration essential. It provides the speed comparable to a hardware implementation, but it also allows the dynamic reconfiguration to meet the multiple application needs of the system. Different applications can be loaded on the FPGA, as the...