— Synthesis of robot behaviors towards nontrivial goals often requires reasoning about both discrete and continuous aspects of the underlying domain. Existing approaches in building automated tools for such synthesis problems attempt to augment methods from either discrete planning or continuous control with hybrid elements, but largely fail to ensure a uniform treatment of both aspects of the domain. In this paper, we present a new formalism, Constrained Intuitionistic Linear Logic (CILL), merging continuous constraint solvers with linear logic to yield a single language in which hybrid properties of robotic behaviors can be expressed and reasoned