— The success of sampling-based motion planners has resulted in a plethora of methods for improving planning components, such as sampling and connection strategies, local planners and collision checking primitives. Although this rapid progress indicates the importance of the motion planning problem and the maturity of the field, it also makes the evaluation of new methods time consuming. We propose that a systems approach is needed for the development and the experimental validation of new motion planners and/or components in existing motion planners. In this paper, we present the Online, Open-source, Programming System for Motion Planning (OOPSMP), a programming infrastructure that provides implementations of various existing algorithms in a modular, object-oriented fashion that is easily extendible. The system is open-source, since a community-based effort better facilitates the development of a common infrastructure and is less prone to errors. We hope that researchers will contr...
Erion Plaku, Kostas E. Bekris, Lydia E. Kavraki