— Given a robot model and a class of admissible environments, this paper provides a framework for automatically and verifiably composing controllers that satisfy high level task specifications expressed in suitable temporal logics. The desired task specifications can express complex robot behaviors such as search and rescue, coverage, and collision avoidance. In addition, our framework explicitly captures sensor specifications that depend on the environment with which the robot is interacting, resulting in a novel paradigm for sensor-based temporal logic motion planning. As one robot is part of the environment of another robot, our sensor-based framework very naturally captures multi-robot specifications. Our computational approach is based on first creating discrete controllers satisfying so-called General Reactivity(1) formulas. If feasible, the discrete controller is then used in order to guide the sensor-based composition of continuous controllers resulting in a hybrid cont...
Hadas Kress-Gazit, Georgios E. Fainekos, George J.