This paper addresses the problem of computing cues to the three-dimensional structure of surfaces in the world directly from the local structure of the brightness pattern of a binocular image pair. The geometric information content of the gradient of binocular disparity is analyzed for the general case of a xating system with symmetric or asymmetric vergence, and with either known or unknown viewing geometry. A computationally inexpensive technique which exploits this analysis is proposed. This technique allows a local estimate of surface orientation to be computed directly from the local statistics of the left and right image brightness gradients, without iterations or search. The viability of the approach is demonstrated with experimental results for both synthetic and natural gray-level images.