Abstract— This paper reports the design of a high performance, adaptive low/high swing CMOS driver circuit (mj–driver) suitable for driving of global interconnects with large capacitive load. When implemented on 0.13µm CMOS technology, mj–driver performs 16% faster, reduces the power consumption by 3%, and energy delay product by 19% when compared with a counterpart driver in diode–connected configuration. On the other hand, mj– driver has 47% lower active area and only requires one set of sizing for optimum performance at 1 and 0.8V. Furthermore, unlike its counter part which exhibits 30% variation in output swing voltage with variation in the load, the output voltage swing for the proposed driver remains unchanged with the output load. Comparisons of the proposed driver with conventional full swing CMOS driver are presented as well, indicating a significant saving in energy, due to the reduced swing voltage. The proposed driver has the ability to switch from a low swing ...
José C. García, Juan A. Montiel-Nels