The Fourier phase spectrum of an image is well known to contain crucial information about the image geometry, in particular its contours. In this paper, we show that it is also strongly related to the image quality, in particular its sharpness. We propose a way to define the Global Phase Coherence (GPC) of an image, by estimating the volume of all possible phase functions that, associated with the measured modulus, produce images that are not less likely than the original image. The likelihood is measured with the total variation (RudinOsher-Fatemi implicit prior), and the numerical estimation is realized by a Monte-Carlo simulation. We show that the obtained GPC measure decreases with blur, noise, and ringing, and thus provides a new interesting sharpness indicator, that can be used for parametric blind deconvolution, as demonstrated by experiments.