We propose a mathematical approach for quantifying shape complexity of 3D surfaces based on perceptual principles of visual saliency. Our curvature variation measure (CVM), as a 3D feature, combines surface curvature and information theory by leveraging bandwidth-optimized kernel density estimators. Using a part decomposition algorithm for digitized 3D objects, represented as triangle meshes, we apply our shape measure to transform the low level mesh representation into a perceptually informative form. Further, we analyze the effects of noise, sensitivity to digitization, occlusions, and descriptiveness to demonstrate our shape measure on laser-scanned real world 3D objects.
Sreenivas R. Sukumar, David Page, Andrei V. Gribok