This paper presents an adaptive haptic control for a one degree-of-freedom surgical device. The control addresses the problem of hitting a solid object too hard in the presence of time delay. The proposed control runs in the inner-loop, with no time delay, and follows commanded forces from the outer loop. A Lyapunov-stable backstepping-with-tuning-functions design provides a way to ensure smooth forces are applied that guarantee stability in the presence of unmodeled environmental stiffness. The method naturally becomes a velocity-tracking system when no forces are measured, without need for a switching control law. Experiments using a Phantom hand controller interacting with simulated environment show that collision forces are substantially reduced. The overshoot during a puncture, when moving from a stiff environment to free space, is not worse than with other designs.
Dean Richert, C. J. B. Macnab, Jeff K. Pieper