Sciweavers

BMCBI
2007

Analysis of feedback loops and robustness in network evolution based on Boolean models

13 years 11 months ago
Analysis of feedback loops and robustness in network evolution based on Boolean models
Background: Many biological networks such as protein-protein interaction networks, signaling networks, and metabolic networks have topological characteristics of a scale-free degree distribution. Preferential attachment has been considered as the most plausible evolutionary growth model to explain this topological property. Although various studies have been undertaken to investigate the structural characteristics of a network obtained using this growth model, its dynamical characteristics have received relatively less attention. Results: In this paper, we focus on the robustness of a network that is acquired during its evolutionary process. Through simulations using Boolean network models, we found that preferential attachment increases the number of coupled feedback loops in the course of network evolution. Whereas, if networks evolve to have more coupled feedback loops rather than following preferential attachment, the resulting networks are more robust than those obtained through ...
Yung-Keun Kwon, Kwang-Hyun Cho
Added 08 Dec 2010
Updated 08 Dec 2010
Type Journal
Year 2007
Where BMCBI
Authors Yung-Keun Kwon, Kwang-Hyun Cho
Comments (0)