As the technology enters the nano dimension, the inherent unreliability of nanoelectronics is making fault-tolerant architectures increasingly necessary in building nano systems. Because fault-tolerant hardwares help to mask the effects caused by increased levels of defects, testing the functionality of the chip together with the embedded fault-tolerance becomes a tremendous challenge. In this paper, a new bilateral testing framework for nano circuits is proposed, where multiple stuck-at faults across different modules in a triple module redundancy (TMR) architecture are considered. In addition, a new test generator is presented for the bilateral testing that takes into account the enormous number of bilateral stuck-at faults possible with new types of guidance in the search, and it can generate a set of vectors that can test the TMR-based nano circuit as a single entity. Experimental results reported for ISCAS'85 and ITC99 circuits demonstrate that the bilateral testing can help...
Lei Fang, Michael S. Hsiao