In this paper, a novel design space exploration approach is proposed that enables a concurrent optimization of the topology, the process binding, and the communication routing of a system. Given an application model written in SystemC TLM 2.0, the proposed approach performs a fully automatic optimization by a simultaneous resource allocation, task binding, data mapping, and transaction routing for MPSoC platforms. To cope with the huge complexity of the design space, a transformation of the transaction level model to a graph-based model and symbolic representation that allows multi-objective optimization is presented. Results from optimizing a Motion-JPEG decoder illustrate the effectiveness of the proposed approach.