— Two novel methods for computing 3D structure information from video for a piecewise planar scene are presented. The first method is based on a new line constraint, which clearly separates the estimation of distance from the estimation of slant. The second method exploits the concepts of phase correlation to compute from the change of image frequencies of a textured plane, distance and slant information. The two different estimates together with structure estimates from classical image motion are combined and integrated over time using an extended Kalman filter. The estimation of the scene structure is demonstrated experimentally in a motion control algorithm that allows the robot to move along a corridor. We demonstrate the efficacy of each individual method and their combination and show that the method allows for visual navigation in textured as well as un-textured environments.