Abstract— We present a novel combination of motion planning techniques to compute motion plans for robotic arms. We compute plans that move the arm as close as possible to the goal region using sampling-based planning and then switch to a trajectory optimization technique for the last few centimeters necessary to reach the goal region. This combination allows fast computation and safe execution of motion plans even when the goals are very close to objects in the environment. The system incorporates realtime sensory inputs and correctly deals with occlusions that can occur when robot body parts block the sensor view of the environment. The system is tested on a 7 degree-of-freedom robot arm with sensory input from a tilting laser scanner that provides 3D information about the environment.