Sciweavers

RSS
2007

A Discrete Geometric Optimal Control Framework for Systems with Symmetries

14 years 28 days ago
A Discrete Geometric Optimal Control Framework for Systems with Symmetries
— This paper studies the optimal motion control of mechanical systems through a discrete geometric approach. At the core of our formulation is a discrete Lagrange-d’AlembertPontryagin variational principle, from which are derived discrete equations of motion that serve as constraints in our optimization framework. We apply this discrete mechanical approach to holonomic systems with symmetries and, as a result, geometric structure and motion invariants are preserved. We illustrate our method by computing optimal trajectories for a simple model of an air vehicle flying through a digital terrain elevation map, and point out some of the numerical benefits that ensue.
Marin Kobilarov, Mathieu Desbrun, Jerrold E. Marsd
Added 30 Oct 2010
Updated 30 Oct 2010
Type Conference
Year 2007
Where RSS
Authors Marin Kobilarov, Mathieu Desbrun, Jerrold E. Marsden, Gaurav S. Sukhatme
Comments (0)