Wire pipelining emerges as a new necessity for global wires due to increasing wire delay, shrinking clock period and growing chip size. Existing approaches on wire pipelining are mostly based on edge triggered flip-flops. In this paper, we demonstrate the advantages of using level sensitive latches in terms of both latency and area cost. The input-output timing coupling and the strict short path constraint for latches demand additional design elaborations compared with flip-flops. New approaches are proposed in this work to solve these difficulties so that the advantages of latches can be fully utilized. In particular, a deferred delay padding technique is developed to correct short path violations with the minimal extra cost. These techniques are integrated with a dynamic programming based concurrent synchronous element and repeater insertion framework. Experimental results confirm the advantages of using latches as well as effectiveness of our algorithms.
V. Seth, Min Zhao, Jiang Hu