This paper describes the dynamic control of a 3 degree of freedom (DOF) finger emulating a human finger for reaching a desired fingertip position in space. The control consists of a neural network (NN) which provides the necessary three torques to the phalanges granting a smooth "natural" speed profile of the fingertip motion. To obtain the results, we face these problems: 1) the elimination of the redundancy due to the third joint; 2) the mathematical description of a natural movement; 3) the calculation of the torques for executing movement; and 4) the optimization of the NN's structure. Assuming a "cognitive" approach well-established in the literature, the first and the second points are solved by adopting an extension of the minimum jerk theory. The classic Lagrange equations are applied to compute the three-motor torque. Finally, a multilayer perceptron (MLP) NN is trained to move the device in a natural manner. The generalization capabilities of the NN a...