Abstract— Clock gating is a popular technique for reducing power dissipation in clock network. Although there have been numerous research efforts on clock gating, the previous approaches still have a significant weakness. That is, they usually construct a gated clock tree after cell placement, i.e., cell placement is performed without considering clock gating and may generate a solution unfriendly to subsequent gated clock tree construction. As a result, the control gates inserted in the tree construction is very likely to cause cell overlap. Even though the overlap can be eventually removed in placement legalization, remarkable wirelength/power overhead is incurred. In this paper, we propose a gate planning technique which is integrated with a partition-based cell placer. During cell placement, the planning judiciously inserts clock gates based on power estimation. In addition, pseudo edges are inserted between clock gates and registers in order to reduce clock wirelength and enabl...