Abstract. Transcriptional interactions in a cell are modulated by a variety of mechanisms that prevent their representation as pure pairwise interactions between a transcription factor and its target(s). These include, among others, transcription factor activation by phosphorylation and acetylation, formation of active complexes with one or more cofactors, and mRNA/protein degradation and stabilization processes. This paper presents a first step towards the systematic, genome-wide computational inference of genes that modulate the interactions of specific transcription factors at the post-transcriptional level. The method uses a statistical test based on changes in the mutual information between a transcription factor and each of its candidate targets, conditional on the expression of a third gene. The approach was first validated on a synthetic network model, and then tested in the context of a mammalian cellular system. By analyzing 254 microarray expression profiles of normal and tu...