Sciweavers

ICIP
2005
IEEE

Improving particle filter with support vector regression for efficient visual tracking

14 years 5 months ago
Improving particle filter with support vector regression for efficient visual tracking
—Particle filter is a powerful visual tracking tool based on sequential Monte Carlo framework, and it needs large numbers of samples to properly approximate the posterior density of the state evolution. However, its efficiency will degenerate if too many samples are applied. In this paper, an improved particle filter is proposed by integrating support vector regression into sequential Monte Carlo framework to enhance the performance of particle filter with small sample set. The proposed particle filter utilizes an SVR based re-weighting scheme to re-approximate the posterior density and avoid sample impoverishment. Firstly, a regression function is obtained by support vector regression method over the weighted sample set. Then, each sample is re-weighted via the regression function. Finally, ameliorative posterior density of the state is reapproximated to maintain the effectiveness and diversity of samples. Experimental results demonstrate that the proposed particle filter improves t...
Guangyu Zhu, Dawei Liang, Yang Liu, Qingming Huang
Added 24 Jun 2010
Updated 24 Jun 2010
Type Conference
Year 2005
Where ICIP
Authors Guangyu Zhu, Dawei Liang, Yang Liu, Qingming Huang, Wen Gao
Comments (0)