Sciweavers

AAAI
1992

Inferring Finite Automata with Stochastic Output Functions and an Application to Map Learning

14 years 18 days ago
Inferring Finite Automata with Stochastic Output Functions and an Application to Map Learning
It is often useful for a robot to construct a spatial representation of its environment from experiments and observations, in other words, to learn a map of its environment by exploration. In addition, robots, like people, make occasional errors in perceiving the spatial features of their environments. We formulate map learning as the problem of inferring from noisy observations the structure of a reduced deterministic nite automaton. We assume that the automaton to be learned has a distinguishing sequence. Observation noise is modeled by treating the observed output at each state as a random variable, where each visit to the state is an independent trial and the correct output is observed with probability exceeding 1=2. We assume no errors in the state transition function. Using this framework, we provide an exploration algorithm to learn the correct structure of such an automaton with probability 1 ; , given as inputs , an upper bound m on the number of states, a distinguishing sequ...
Thomas Dean, Dana Angluin, Kenneth Basye, Sean P.
Added 06 Nov 2010
Updated 06 Nov 2010
Type Conference
Year 1992
Where AAAI
Authors Thomas Dean, Dana Angluin, Kenneth Basye, Sean P. Engelson, Leslie Pack Kaelbling, Evangelos Kokkevis, Oded Maron
Comments (0)