Motivation: Analysis and intervention in the dynamics of gene regulatory networks is at the heart of emerging efforts in the development of modern treatment of numerous ailments including cancer. The ultimate goal is to develop methods to intervene in the function of living organisms in order to drive cells away from a malignant state into a benign form. A serious limitation of much of the previous work in cancer network analysis is the use of external control, which requires intervention at each time step, for an indefinite time interval. This is in sharp contrast to the proposed approach, which relies on the solution of an inverse perturbation problem to introduce a one-time intervention in the structure of regulatory networks. This isolated intervention transforms the steadystate distribution of the dynamic system to the desired steady-state distribution. Results: We formulate the optimal intervention problem in gene regulatory networks as a minimal perturbation of the network in ...