Background: Multiple sequence alignment is fundamental. Exponential growth in computation time appears to be inevitable when an optimal alignment is required for many sequences. Exact costs of optimum alignments are therefore rarely computed. Consequently much effort has been invested in algorithms for alignment that are heuristic, or explore a restricted class of solutions. These give an upper bound on the alignment cost, but it is equally important to determine the quality of the solution obtained. In the absence of an optimal alignment with which to compare, lower bounds may be calculated to assess the quality of the alignment. As more effort is invested in improving upper bounds (alignment algorithms), it is therefore important to improve lower bounds as well. Although numerous cost metrics can be used to determine the quality of an alignment, many are based on sum-of-pairs (SP) measures and their generalizations. Results: Two standard and two new methods are considered for using ...
Charles J. Colbourn, Sudhir Kumar