In this communication Simulated Annealing and Genetic Algorithms, are applied to the graph partitioning problem. These techniques mimic processes in statistical mechanics and biology, respectively, and are the most popular meta-heuristics or general-purpose optimization strategies. A hybrid algorithm for circuit partitioning, which uses tabu search to improve the simulated annealing meta-heuristics, is also proposed and compared with pure tabu search and simulated annealing algorithms, and also with a genetic algorithm. The solutions obtained are compared and evaluated by including the hybrid partitioning algorithm in a parallel test generator which is used to determine the test patterns for the circuits of the frequently used ISCAS benchmark set.
Consolación Gil, Julio Ortega, Antonio F. D