Abstract. A mobile robot, represented by a point moving along a polygonal line in the plane, has to explore an unknown polygon and return to the starting point. The robot has a sensing area which can be a circle or a square centered at the robot. This area shifts while the robot moves inside the polygon, and at each point of its trajectory the robot “sees” (explores) all points for which the segment between the robot and the point is contained in the polygon and in the sensing area. We focus on two tasks: exploring the entire polygon and exploring only its boundary. We consider several scenarios: both shapes of the sensing area and the Manhattan and the Euclidean metrics. We focus on two quality benchmarks for exploration performance: optimality (the length of the trajectory of the robot is equal to that of the optimal robot knowing the polygon) and competitiveness (the length of the trajectory of the robot is at most a constant multiple of that of the optimal robot knowing the pol...