Although direct volume rendering is a powerful tool for visualizing complex structures within volume data, the size and complexity of the parameter space controlling the rendering process makes generating an informative rendering challenging. In particular, the specification of the transfer function -- the mapping from data values to renderable optical properties -- is frequently a time-consuming and unintuitive task. Ideally, the data being visualized should itself suggest an appropriate transfer function that brings out the features of interest without obscuring them with elements of little importance. We demonstrate that this is possible for a large class of scalar volume data, namely that where the regions of interest are the boundaries between different materials. A transfer function which makes boundaries readily visible can be generated from the relationship between three quantities: the data value and its first and second directional derivatives along the gradient direction. A...
Gordon L. Kindlmann, James W. Durkin