The standard algorithms for solving large-scale convex-concave saddle point problems, or, more generally, variational inequalities with monotone operators, are proximal type algorithms which at every iteration need to compute a prox-mapping, that is, to minimize over problem’s domain X the sum of a linear form and the specific convex distance-generating function underlying the algorithms in question. (Relative) computational simplicity of prox-mappings, which is the standard requirement when implementing proximal algorithms, clearly implies the possibility to equip X with a relatively computationally cheap Linear Minimization Oracle (LMO) able to minimize over X linear forms. There are, however, important situations where a cheap LMO indeed is available, but where no proximal setup with easy-to-compute prox-mappings is known. This fact motivates our goal in this paper, which is to develop techniques for solving variational inequalities with monotone operators on domains given by Li...