Abstract: Fusion of information from graph features and content can provide superior inference for an anomaly detection task, compared to the corresponding content-only or graph feature-only statistics. In this paper, we design and execute an experiment on a time series of attributed graphs extracted from the Enron email corpus which demonstrates the benefit of fusion. The experiment is based on injecting a controlled anomaly into the real data and measuring its detectability. 1
John Grothendieck, Carey E. Priebe, Allen L. Gorin