Niching schemes, which sustain population diversity and let an evolutionary population avoid premature convergence, have been extensively studied in the research field of evolutionary algorithms. Neuroevolutionary (NE) algorithms, such as NEAT, have also benefitted from niching. However, the latest research indicates that the use of genotypeor phenotype-similarity-based niching schemes in NE algorithms is not highly effective because these schemes have difficulty sustaining the behavioral diversity in the environment. In this paper, we propose a novel niching scheme that takes into consideration both the phenotypic and behavioral diversity, and then integrate it with NEAT. An experimental analysis revealed that the proposed algorithm outperforms the original NEAT for various problem settings. More interestingly, it performs especially well for problems with a high noise level and large state space. Since these features are common in problems to which NEAT is applied, the proposed a...