Resolution enhancement techniques (RET) such as optical proximity correction (OPC) and phase-shift mask (PSM) technology are deployed in modern processes to increase the fidelity of printed features, especially critical dimensions (CD) in polysilicon. Even given these exotic technologies, there has been momentum towards less flexibility in layout, in order to ensure printability. However, there has not been a systematic study of the performance and manufacturability impact of such a move towards restrictive design rules. In this paper we present a design flow that evaluates the application of various restricted design rule (RDR) sets in deep submicron ASIC designs in terms of circuit performance and parametric yield. Using such a framework, process and design engineers can identify potential solutions to maximize manufacturability by selectively applying RDRs while maintaining chip performance. In this work we focus attention on the device layer which is the most difficult design laye...
Luigi Capodieci, Puneet Gupta, Andrew B. Kahng, De