This paper outlines aspects of locomotor control in insects that may serve as the basis for the design of controllers for autonomous hexapod robots. Control of insect walking can be considered hierarchical and modular. The brain determines onset, direction, and speed of walking. Coordination is done locally in the ganglia that control leg movements. Typically, networks of neurons capable of generating alternating contractions of antagonistic muscles (termed central pattern generators, or CPGs) control the stepping movements of individual legs. The legs are coordinated by interactions between the CPGs and sensory feedback from the moving legs. This peripheral feedback provides information about leg load, position, velocity, and acceleration, as well as information about joint angles and foot contact. In addition, both the central pattern generators and the sensory information that feeds them may be modulated or adjusted according to circumstances. Consequently, locomotion in insects is ...