Sciweavers

651 search results - page 71 / 131
» Algorithms for Inverse Reinforcement Learning
Sort
View
SMC
2007
IEEE
102views Control Systems» more  SMC 2007»
15 years 8 months ago
An improved immune Q-learning algorithm
—Reinforcement learning is a framework in which an agent can learn behavior without knowledge on a task or an environment by exploration and exploitation. Striking a balance betw...
Zhengqiao Ji, Q. M. Jonathan Wu, Maher A. Sid-Ahme...
ATAL
2003
Springer
15 years 7 months ago
A selection-mutation model for q-learning in multi-agent systems
Although well understood in the single-agent framework, the use of traditional reinforcement learning (RL) algorithms in multi-agent systems (MAS) is not always justified. The fe...
Karl Tuyls, Katja Verbeeck, Tom Lenaerts
ICML
2006
IEEE
16 years 3 months ago
Relational temporal difference learning
We introduce relational temporal difference learning as an effective approach to solving multi-agent Markov decision problems with large state spaces. Our algorithm uses temporal ...
Nima Asgharbeygi, David J. Stracuzzi, Pat Langley
AIIDE
2009
15 years 3 months ago
Examining Extended Dynamic Scripting in a Tactical Game Framework
Dynamic scripting is a reinforcement learning algorithm designed specifically to learn appropriate tactics for an agent in a modern computer game, such as Neverwinter Nights. This...
Jeremy Ludwig, Arthur Farley
ICML
2009
IEEE
16 years 3 months ago
Binary action search for learning continuous-action control policies
Reinforcement Learning methods for controlling stochastic processes typically assume a small and discrete action space. While continuous action spaces are quite common in real-wor...
Jason Pazis, Michail G. Lagoudakis