Sciweavers

105 search results - page 18 / 21
» The generalized Bayesian committee machine
Sort
View
ICML
2004
IEEE
14 years 11 months ago
Parameter space exploration with Gaussian process trees
Computer experiments often require dense sweeps over input parameters to obtain a qualitative understanding of their response. Such sweeps can be prohibitively expensive, and are ...
Robert B. Gramacy, Herbert K. H. Lee, William G. M...
ALT
2004
Springer
14 years 7 months ago
Relative Loss Bounds and Polynomial-Time Predictions for the k-lms-net Algorithm
We consider a two-layer network algorithm. The first layer consists of an uncountable number of linear units. Each linear unit is an LMS algorithm whose inputs are first “kerne...
Mark Herbster
BMCBI
2007
194views more  BMCBI 2007»
13 years 11 months ago
Kernel-imbedded Gaussian processes for disease classification using microarray gene expression data
Background: Designing appropriate machine learning methods for identifying genes that have a significant discriminating power for disease outcomes has become more and more importa...
Xin Zhao, Leo Wang-Kit Cheung
JMLR
2002
137views more  JMLR 2002»
13 years 10 months ago
The Subspace Information Criterion for Infinite Dimensional Hypothesis Spaces
A central problem in learning is selection of an appropriate model. This is typically done by estimating the unknown generalization errors of a set of models to be selected from a...
Masashi Sugiyama, Klaus-Robert Müller
ICDM
2008
IEEE
160views Data Mining» more  ICDM 2008»
14 years 5 months ago
Direct Zero-Norm Optimization for Feature Selection
Zero-norm, defined as the number of non-zero elements in a vector, is an ideal quantity for feature selection. However, minimization of zero-norm is generally regarded as a combi...
Kaizhu Huang, Irwin King, Michael R. Lyu