Sciweavers

ICML
2008
IEEE
15 years 10 days ago
Deep learning via semi-supervised embedding
We show how nonlinear embedding algorithms popular for use with shallow semisupervised learning techniques such as kernel methods can be applied to deep multilayer architectures, ...
Frédéric Ratle, Jason Weston, Ronan ...
ICML
2008
IEEE
15 years 10 days ago
On the quantitative analysis of deep belief networks
Deep Belief Networks (DBN's) are generative models that contain many layers of hidden variables. Efficient greedy algorithms for learning and approximate inference have allow...
Ruslan Salakhutdinov, Iain Murray
ICML
2008
IEEE
15 years 10 days ago
Fast Gaussian process methods for point process intensity estimation
Point processes are difficult to analyze because they provide only a sparse and noisy observation of the intensity function driving the process. Gaussian Processes offer an attrac...
John P. Cunningham, Krishna V. Shenoy, Maneesh Sah...
ICML
2008
IEEE
15 years 10 days ago
Nonextensive entropic kernels
André F. T. Martins, Eric P. Xing, Má...
ICML
2008
IEEE
15 years 10 days ago
Nearest hyperdisk methods for high-dimensional classification
In high-dimensional classification problems it is infeasible to include enough training samples to cover the class regions densely. Irregularities in the resulting sparse sample d...
Hakan Cevikalp, Bill Triggs, Robi Polikar
ICML
2008
IEEE
15 years 10 days ago
Apprenticeship learning using linear programming
In apprenticeship learning, the goal is to learn a policy in a Markov decision process that is at least as good as a policy demonstrated by an expert. The difficulty arises in tha...
Umar Syed, Michael H. Bowling, Robert E. Schapire
ICML
2008
IEEE
15 years 10 days ago
Semi-supervised learning of compact document representations with deep networks
Finding good representations of text documents is crucial in information retrieval and classification systems. Today the most popular document representation is based on a vector ...
Marc'Aurelio Ranzato, Martin Szummer
ICML
2008
IEEE
15 years 10 days ago
Democratic approximation of lexicographic preference models
Previous algorithms for learning lexicographic preference models (LPMs) produce a "best guess" LPM that is consistent with the observations. Our approach is more democra...
Fusun Yaman, Thomas J. Walsh, Michael L. Littman, ...
ICML
2008
IEEE
15 years 10 days ago
The asymptotics of semi-supervised learning in discriminative probabilistic models
Semi-supervised learning aims at taking advantage of unlabeled data to improve the efficiency of supervised learning procedures. For discriminative models however, this is a chall...
François Yvon, Nataliya Sokolovska, Olivier...
ICML
2008
IEEE
15 years 10 days ago
Structure compilation: trading structure for features
Structured models often achieve excellent performance but can be slow at test time. We investigate structure compilation, where we replace structure with features, which are often...
Dan Klein, Hal Daumé III, Percy Liang