This site uses cookies to deliver our services and to ensure you get the best experience. By continuing to use this site, you consent to our use of cookies and acknowledge that you have read and understand our Privacy Policy, Cookie Policy, and Terms
The aim of compressed sensing is to recover attributes of sparse signals using very few measurements. Given an overall bit budget for quantization, this paper demonstrates that th...
Victoria Kostina, Marco F. Duarte, Sina Jafarpour,...
This paper studies compressed sensing for the recovery of non-negative sparse vectors from a smaller number of measurements than the ambient dimension of the unknown vector. We fo...
We study the information-theoretic limits of exactly recovering the support set of a sparse signal, using noisy projections defined by various classes of measurement matrices. Our ...
Wei Wang, Martin J. Wainwright, Kannan Ramchandran