Transactional Memory (TM) simplifies parallel programming by allowing for parallel execution of atomic tasks. Thus far, TM systems have focused on implementing transactional state buffering and conflict resolution. Missing is a robust hardware/software interface, not limited to simplistic instructions defining transaction boundaries. Without rich semantics, current TM systems cannot support basic features of modern programming languages and operating systems such as transparent library calls, conditional synchronization, system calls, I/O, and runtime exceptions. This paper presents a comprehensive instruction set architecture (ISA) for TM systems. Our proposal introduces three key mechanisms: two-phase commit; support for software handlers on commit, violation, and abort; and full support for open- and closed-nested transactions with independent rollback. These mechanisms provide a flexible interface to implement programming language and operating system functionality. We also sh...
Austen McDonald, JaeWoong Chung, Brian D. Carlstro