The essence of the signal-to-symbol problem consists of associating a symbolic description of an object (e.g., a chair) to a signal (e.g., an image) that captures the real object. Robots that interact with humans in natural environments must be able to solve this problem correctly and robustly. However, the problem of providing complete object models a priori to a robot so that it can understand its environment from any viewpoint is extremely difficult to solve. Additionally, many objects have different uses which in turn can cause ambiguities when a robot attempts to reason about the activities of a human and their interactions with those objects. In this paper, we build upon the fact that robots that co-exist with humans should have the ability of observing humans using the different objects and learn the corresponding object definitions. We contribute an object recognition algorithm, FOCUS, that is robust to the variations of signals, combines structure and function of an object,...
Manuela M. Veloso, Paul E. Rybski, Felix von Hunde