— A new three degrees of freedom translational parallel manipulator (TPM) with fixed actuators, called a general 3-PRC TPM, is proposed in this paper. The mobility of the manipulator is analyzed via screw theory. The inverse kinematics, forward kinematics, and velocity analysis are performed and the singularity problems are investigated afterwards, which can be applied to a general 3-PRC TPM regardless of actuators arrangement. With the variation on actuators layout angle, the reachable workspace of the manipulator is generated and compared. Especially, it is illustrated that the manipulator in principle possesses a uniform workspace with a constant hexagon shape cross section. Furthermore, the dexterity characteristics is investigated in the global sense. Simulation results show that different specific tasks should be considered when the actuators layout angles of a general 3-PRC TPM are designed.