This paper describes the adaptation and evaluation of existing nestedsurface visualization techniques for the problem of displaying intersecting surfaces. For this work, we collaborated with a neurosurgeon who is comparing multiple tumor segmentations with the goal of increasing the segmentation accuracy and reliability. A second collaborator, a physicist, aims to validate geometric models of specimens against atomic-force microscope images of actual specimens. These collaborators are interested in comparing both surface shape and inter-surface distances. Many commonly employed techniques for visually comparing multiple surfaces (side-by-side, wireframe, colormaps, uniform translucence) do not simultaneously convey inter-surface distance and the shapes of two or more surfaces. This paper describes a simple geometric partitioning of intersecting surfaces that enables the application of existing nested-surface techniques, such as texturemodulated translucent rendering of exteriors, to a...
Chris Weigle, Russell M. Taylor II