This paper presents an efficient methodology for estimating the energy consumption of application programs running on extensible processors. Extensible processors, which are increasingly popular in embedded system design, allow a designer to customize a base processor core through instruction set extensions. Existing processor energy macro-modeling techniques are not applicable to extensible processors, since they assume that the instruction set architecture as well as the underlying structural description of the microarchitecture remain fixed. Our solution to this problem is an energy macro-model suitably parameterized to estimate the energy consumption of a processor instance that incorporates any custom instruction extensions. Such a characterization is facilitated by careful selection of macro-model parameters/variables that can capture both the functional and structural aspects of the execution of a program on an extensible processor. Another feature of the proposed characteriz...