In this paper we present a single-chip FPGA full encryptor/decryptor core design of the AES algorithm. Our design performs all of them, encryption, decryption and key scheduling processes. High performance timing figures are obtained through the use of a pipelined architecture. Moreover, several modifications to the conventional AES algorithm’s formulations have been introduced, thus allowing us to obtain a significant reduction in the total number of computations and the path delay associated to them. Particularly, for the implementation of the most costly step of AES, multiplicative inverse in GF(28 ), two approaches were considered. The first approach uses pre-computed values stored in a lookup table giving fast execution times of the algorithm at the price of memory requirements. Our second approach computes multiplicative inverse by using composite field techniques, yielding a reduction in the memory requirements at the cost of an increment in the execution time. The obtained re...
Nazar A. Saqib, Francisco Rodríguez-Henr&ia