Vibrations can significantly enhance touch perception for virtual environment applications with minimal design complexity and cost. In order to create realistic vibrotactile feedback, we collected vibrations, forces, and velocities during various tasks executed with a stylus: tapping on materials, stroking textures, and puncturing membranes. Empirical models were fit to these waveforms and a library of model parameters was compiled. These models simulated tasks involving simultaneous display of forces and vibrations on a high-bandwidth force-feedback joystick. Vibration feedback adds little complexity to virtual environment algorithms. Human subjects interacting with the system showed improved execution and perception when performing surface feature discrimination tasks.
Allison M. Okamura, Stanford Dennerlein, Robert D.