We describe the capabilities of and algorithms used in a new FPGA CAD tool, Versatile Place and Route (VPR). In terms of minimizing routing area, VPR outperforms all published FPGA place and route tools to which we can compare. Although the algorithms used are based on previously known approaches, we present several enhancements that improve run-time and quality. We present placement and routing results on a new set of large circuits to allow future benchmark comparisons of FPGA place and route tools on circuit sizes more typical of today’s industrial designs. VPR is capable of targeting a broad range of FPGA architectures, and the source code is publicly available. It and the associated netlist translation / clustering tool VPACK have already been used in a number of research projects worldwide, and should be useful in many areas of FPGA architecture research.