This paper presents a new approach for on-chip test pattern generation. The set of test patterns generated by a pseudo-random pattern generator (e.g., an LFSR) is transformed into a new set of patterns that provides the desired fault coverage. The transformation is performed by a small amount of mapping logic that decodes sets of patterns that don’t detect any new faults and maps them into patterns that detect the hard-to-detect faults. The mapping logic is purely combinational and is placed between the pseudo-random pattern generator and the circuit under test (CUT). A procedure for designing the mapping logic so that it satisfies test length and fault coverage requirements is described. Results are shown for benchmark circuits which indicate that an LFSR plus a small amount of mapping logic reduces the test length required for a particular fault coverage by orders of magnitude compared with using an LFSR alone. These results are compared with previously published results for other...
Nur A. Touba, Edward J. McCluskey