— This paper presents a method for Simultaneous Localization and Mapping (SLAM), relying on a monocular camera as the only sensor, which is able to build outdoor, closed-loop maps much larger than previously achieved with such input. Our system, based on the Hierarchical Map approach [1], builds independent local maps in real-time using the EKF-SLAM technique and the inverse depth representation proposed in [2]. The main novelty in the local mapping process is the use of a data association technique that greatly improves its robustness in dynamic and complex environments. A new visual map matching algorithm stitches these maps together and is able to detect large loops automatically, taking into account the unobservability of scale intrinsic to pure monocular SLAM. The loop closing constraint is applied at the upper level of the Hierarchical Map in near real-time. We present experimental results demonstrating monocular SLAM as a human carries a camera over long walked trajectories in...
Laura A. Clemente, Andrew J. Davison, Ian D. Reid,