Sciweavers

BMCBI
2008

GBNet: Deciphering regulatory rules in the co-regulated genes using a Gibbs sampler enhanced Bayesian network approach

14 years 28 days ago
GBNet: Deciphering regulatory rules in the co-regulated genes using a Gibbs sampler enhanced Bayesian network approach
Background: Combinatorial regulation of transcription factors (TFs) is important in determining the complex gene expression patterns particularly in higher organisms. Deciphering regulatory rules between cooperative TFs is a critical step towards understanding the mechanisms of combinatorial regulation. Results: We present here a Bayesian network approach called GBNet to search for DNA motifs that may be cooperative in transcriptional regulation and the sequence constraints that these motifs may satisfy. We showed that GBNet outperformed the other available methods in the simulated and the yeast data. We also demonstrated the usefulness of GBNet on learning regulatory rules between YY1, a human TF, and its co-factors. Most of the rules learned by GBNet on YY1 and co-factors were supported by literature. In addition, a spacing constraint between YY1 and E2F was also supported by independent TF binding experiments. Conclusion: We thus conclude that GBNet is a useful tool for deciphering...
Li Shen, Jie Liu, Wei Wang
Added 09 Dec 2010
Updated 09 Dec 2010
Type Journal
Year 2008
Where BMCBI
Authors Li Shen, Jie Liu, Wei Wang
Comments (0)