Background: Enzymes are responsible for the catalysis of the biochemical reactions in metabolic pathways. Analogous enzymes are able to catalyze the same reactions, but they present no significant sequence similarity at the primary level, and possibly different tertiary structures as well. They are thought to have arisen as the result of independent evolutionary events. A detailed study of analogous enzymes may reveal new catalytic mechanisms, add information about the origin and evolution of biochemical pathways and disclose potential targets for drug development. Results: In this work, we have constructed and implemented a new approach, AnEnPi (the Analogous Enzyme Pipeline), using a combination of bioinformatics tools like BLAST, HMMer, and in-house scripts, to assist in the identification, annotation, comparison and study of analogous and homologous enzymes. The algorithm for the detection of analogy is based i) on the construction of groups of homologous enzymes and ii) on the id...
Thomas D. Otto, Ana Carolina R. Guimarães,