: The tumour suppressor protein p53 protein has a core domain that binds DNA and is the site for most oncogenic mutations. This domain is quite unstable compared to its homologs p63 and p73. Two key residues in the core domain of p53 (Tyr236, Thr253), have been mutated in-silico, to their equivalent residues in p63 (Phe238 and Ile255) and p73 (Phe238 and Ile255), with subsequent increase in stability of p53. Computational studies have been performed to examine the basis of instability in p53. Results: Molecular dynamics simulations suggest that mutations in p53 lead to increased conformational sampling of the phase space which stabilizes the system entropically. In contrast, reverse mutations, where p63 and p73 were mutated by replacing the Phe238 and Ile255 by Tyr and Thr respectively (as in p53), showed reduced conformational sampling although the change for p63 was much smaller than that for p73. Barriers to the rotation of sidechains containing aromatic rings at the core of the pr...